Instructor
John J.B. Allen
424 Psychology
Email: John.JB.Allen@Arizona.edu
Phone: 621-4992
Office Hours: Th 300-500 but please make an appointment at johnjballen.youcanbook.me

Course Description
This course will provide an overview of the principles, theory, and applications of psychophysiological assessment. The course has three main goals:

a) to provide an introduction to major psychophysiological measures, covering their physiological bases, proper recording and signal processing procedures, and appropriate interpretation;

b) to provide an introduction to theory and research in major areas of human psychophysiology with specific applications to the study of cognition, affect, and psychopathology; and,

c) to provide an introduction to laboratory techniques and methodological principles in human psychophysiology.

The latter goal will be met through didactic as well as experiential means. For this reason, the course is designed to be taken (but not required to be taken) concurrently with PSY 401B/501B, Psychophysiology Laboratory.

Course Webpage
Please visit the course webpage (jallen.faculty.arizona.edu, courses) for links to:

- Copies of lecture slides
- The reading list with links to download pdfs and access the book electronically
- A copy of the paper requirements and guidelines
- Grade information

Any changes to the course content or schedule will be reflected on the course webpage.

Course Structure
The course will involve a combination of lecture, discussion, and demonstrations. I will bring in samples of physiological signals for us to examine, and if you have psychophysiological data you are interested in examining, please let me know. There is no explicit participation requirement, but you will get more out of the course if you ask questions as they arise. We will be covering technical material, and you should feel quite free to interject your questions when they occur to you. Each class period, you will hand in a 3x5 card with your name and a question or comment that arose for you in the context of the lecture. This feedback mechanism, in addition to serving to keep attendance, will provide me with feedback in terms of how the material is being understood (or not understood!).

Readings
Readings will be taken from two textbooks. The *Handbook of Psychophysiology* is a rather expensive but comprehensive handbook that will serve as a great reference for those of you who have continuing interest in the field. This book is also as an electronic book (follow link on the class webpage to the reading list for downloads). The other book is out of print, but is available as a pdf, available for download at that same link. Readings will also be taken from other sources, which are available as pdf files for downloading (from that same link).

The main single source of readings for the course is:

The assigned readings from this text are listed below under the schedule of topics and readings. The other textbook is a programmed-learning text in basic electricity that is available for download from the link above:

You should complete Chapters 1-5 of this programmed text. There will be a pass/fail test covering this material to be administered at the beginning of class 11 February, 2013. You must score above 80% to pass; you may retake the test should you need to do so.

Evaluation

Students in 401A will be evaluated separately from those in 501A. Your grade will be determined by the electricity test (passing gives you 20% of the total points; failing = no points), attendance (10%), your grade on a research proposal paper (40%, details on the course webpage, due 29 April, 2013, 3 pm, via email), and your performance on a take-home final (30%, due 7 May, 2013, noon, hard copy in my mailbox). The take-home final will be given to students on the last day of class and be due one week later during the final exam time. Late papers or exams will receive a 10% reduction in possible points for each day such papers or exams are late.

Your letter grade will be determined in the following way: The highest total score (based on the electricity test, attendance, the paper, and the take-home final) attained by any student in the class (for 401A and for 501A, considered separately) will become the reference score for grading. There will therefore be one reference score for 401A, and one for 501A. The student(s) with this highest total score will receive a grade of 100%. All other students will receive a percentage grade based upon this highest score, and the following scale will be applied:

- 90% & above = A
- 80%-89% = B
- 70%-79% = C
- 60%-69% = D
- Below 60% = Fail

Incompletes

Short of major medical illness or global catastrophe, there is virtually no reason I will award an incomplete grade for this course. Incompletes merely move a crisis from one time to another.

D2L

We won’t use D2L. I don’t like it much.

Absences

If you need to miss class, you will lose attendance credit for that day. You can get notes and a video podcast of that day’s lecture and activities from the course website.

Students with Disabilities

If you anticipate barriers related to the format or requirements of this course, please meet with me so that we can discuss ways to ensure your full participation in the course. If you determine that disability-related accommodations are necessary, please register with Disability Resources (621-3268; drc.arizona.edu) and notify me of your eligibility for reasonable accommodations. We can then plan how best to coordinate your accommodations.

Academic Integrity

Students are expected to adhere to the UA Code of Academic Integrity as described in the UA General Catalog: http://deanofstudents.arizona.edu/codeofacademicintegrity Cheating or plagiarism on the exam or the paper will result in a failing grade for the course, a notice will be sent to the Dean’s office, and expulsion from the University of Arizona can result. Plagiarism is defined as any case where one person tries to take credit for the ideas or work of another, including fellow students, or published authors.

Use of Electronic Gizmos

Computers or tablets may be used for note-taking and downloading lecture notes. As such they can be useful, but alas, they can also be a potent distraction. Please do not use them for other purposes (e.g. social media, e-chatting, shopping, catching up on email) or you will be asked to leave the classroom. Please turn your phones to silent mode and do not use them during class or you will be asked to leave the classroom.
Tentative Schedule of Topics & Readings
Links for all readings available from course website

14 January: **Overviews**

21 January: **Martin Luther King Holiday -- University Closed**

28 January: **Foundations: Basic Electricity, Neuroanatomy and Neurophysiology**

4 February: **Electrodermal Activity: Basics and Application to Polygraph Testing**

11 February: **BASIC ELECTRICITY TEST ADMINISTERED AT START OF CLASS**

Catch Up Class: Electrodermal Activity continued, Possibly The Oculomotor System

18 February: **Cardiovascular Psychophysiology**

25 February: **The Skeletomotor System**

4 March: The Electroencephalogram, Basics in Recording EEG, Frequency Domain Analysis and its Applications I -- Mood Disorders & Emotions

11 March: Spring Recess!!!!!!!!!

18 March: Frequency Domain Analysis and its Applications II -- Oscillatory and "40 Hertz" Phenomena

1 April: The Polysomnograph and Issues in Sleep Research (readings subject to change)

8 April: More Applications of the ERP: P300, N400, ERN

15 April: **Functional Neuroimaging: PET and fMRI (Readings subject to change)**

22 April: **Advanced Signal Processing I**

29 April: **(PAPER DUE 3 PM) Advanced Signal Processing II**

7 May: **FINAL EXAM DUE NOON**

Other recommended sources for the seriously inclined:

Supervising Instructor: John JB Allen (John.JB.Allen@email.arizona.edu)
Laboratory Teaching Assistant: Lauritz Dieckman (lauritzd@email.arizona.edu)

Laboratory Location
Laboratory sessions will take place in the Psychophysiology Laboratory, room 409 Psychology. This is a research laboratory, but times will be made available for class members to conduct experiments, under the supervision of the teaching assistant, in the laboratory.

Meeting Times and Important Dates

<table>
<thead>
<tr>
<th>Lab Mtg</th>
<th>Report Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 29</td>
<td>Lab Introduction & Tour</td>
</tr>
<tr>
<td>Feb 5</td>
<td>Skin Conductance (2/19)</td>
</tr>
<tr>
<td>Feb 26</td>
<td>Cardiovascular (3/19)</td>
</tr>
<tr>
<td>Mar 26</td>
<td>EEG (4/9)</td>
</tr>
<tr>
<td>Apr 9</td>
<td>ERP (5/2)</td>
</tr>
</tbody>
</table>

Description
Psychophysiology Laboratory must be taken concurrently with PSY 401A/501A, Psychophysiology Seminar. The objective of the laboratory is to provide a pragmatic "hands-on" experience in psychophysiological recording and analysis. The laboratory will involve learning the many facets of psychophysiological signal acquisition and analysis. Four experiments will be conducted, each involving different response systems, offering you the opportunity to gain experience acquiring, analyzing, and interpreting autonomic and electrocortical psychophysiological measures.

Evaluation
For each experiment, students will be required to write an APA-style method and results section. These four papers will form the basis of your grade for the lab.

Experiments to be conducted

Experiment 1: Skin-conductance Guilty Knowledge Technique
Experiment 2: Electrocardiographic (EKG) responses to stress/emotion
Experiment 3: Frontal electroencephalographic (EEG) spectral changes
Experiment 4: Event-related brain potentials (ERPs)

Readings:

Readings will be provided as required in addition to the following, which should be read in advance of the first laboratory session (available from reading list for downloads on class website):